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Overview

• We present an efficient proof scheme for left-to-right modular
exponentiation
• When one calculates an ≡ r (mod m) using left-to-right

modular exponentiation, we can prove and verify the
correctness of this calculation much faster than the
calculation itself
• Among other uses, we have doubled the speed of the current

search for Generalized Fermat primes at PrimeGrid using our
work
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PrimeGrid

• Large primes hold significant scientific value to number
theorists; PrimeGrid is the largest distributed systematic
search for primes, with 350K volunteers worldwide
• One of the types of primes PrimeGrid searches for are

Generalized Fermat primes, i.e. primes of the form b(2k) + 1
where k ≤ 22 for integer b; Generalized Fermat search may
produce a prime of record-breaking size

Darren Li
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Technology of PrimeGrid

• To search for Generalized Fermat primes, PrimeGrid uses
Genefer, developed by my advisor Yves Gallot, for primality
tests of Generalized Fermat prime candidates
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Fast verification - why?

• In distributed computing, all results must be verified
• Slow verification does the same work twice, and this is what

PrimeGrid previously did
• Fast verification involves creating a proof that the calculation

is right, and requires that both making the proof and verifying
the proof is efficient
• We show that this is possible for all modular exponentiation

calculations, which is the bulk of primality tests
• This reduces the work necessary for a primality test on

PrimeGrid from 2 times to ~1.01 times

Darren Li
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Gerbicz-Pietrzak proof scheme

• The most general proof scheme preceding ours is the
Gerbicz-Pietrzak proof scheme, using a combination of the
ideas presented by Robert Gerbicz, and the Pietrzak VDF
construction by Krzysztof Pietrzak
• The Gerbicz-Pietrzak proof scheme only applies to

calculations of the form a(2L) mod m, i.e. a process of
squaring a value L times
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Gerbicz double check

• Gerbicz presented a double check scheme:

Gerbicz double check scheme
Let xi = a2i represent the steps of the squaring process. To verify that
xB , x2B , x3B , . . . satisfies xi = x2B

i−B , we may instead check:

j∏
i=1

xiB =

j∏
i=1

x2B

(i−1)B =

(j−1∏
i=0

xiB

)2B

• Can catch computation errors on friendly hosts, but is too
large to use and too easy to fake to use as proof

Darren Li
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Gerbicz-Pietrzak Example

• As an example, consider the computation of 2256:

21︸︷︷︸
x0

→ 22︸︷︷︸
x1

→ 24︸︷︷︸
x2

→ 28︸︷︷︸
x3

→ 216︸︷︷︸
x4

→ 232︸︷︷︸
x5

→ 264︸︷︷︸
x6

→ 2128︸︷︷︸
x7

→ 2256︸︷︷︸
x8

• Gerbicz double check: (x2x4x6x8)
?
= (x0x2x4x6)4

• Gerbicz-Pietrzak proof: initially, x8
?
= x256

0 ; prover sends x4,
verifier selects Q = 3, becomes x4x3

8
?
= (x0x3

4 )
16

• Prover sends (x0x3
4 )

4 = x2x3
6 , verifier selects Q = 2, becomes

x2x2
4 x3

6 x6
8

?
= (x0x2

2 x3
4 x6

6 )
4 which the verifier can compute

• Gerbicz-Pietrzak proof is then [x8, x4, x2x3
6 ]

Darren Li
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Our contribution

• We generalize the Gerbicz-Pietrzak construction to a sound
proof scheme for all instances of left-to-right modular
exponentiation
• Our methods have been implemented in Genefer22 (the

successor to Genefer) and have already been deployed on
PrimeGrid, doubling PrimeGrid’s search efficiency and creating
a fair opportunity for everyone

Darren Li
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Proof scheme

• We begin by describing a simple extension of the Gerbicz
double check to general exponents
• An analog of the Pietrzak proof scheme is impossible to

directly accomplish
• We begin by approaching the problem informally, introducing

claims that can be easily split
• We then formalize this interaction as a succinct argument for

a formal language

Darren Li
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Soundness of proof scheme

• To prove soundness even in adversarial conditions, we use the
generalized forking lemma to show soundness assuming the
low order assumption
• In other words, if the low order assumption cannot be

efficiently broken, one cannot efficiently forge a proof of
a false result
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Double check scheme

• For left-to-right modular exponentiation of an, the sequence
of calculations is instead ui = a⌊n/2i⌋

• The relation between ui and ui+j is ui = u2j
i+ja⌊n/2

i⌋ mod 2j

• Taking products across i = 0,B, 2B, . . . and j = B provides
an analogy for the Gerbicz double check:

∏
i=0

uiB =

(∏
i=0

uiB+B

)2B

a
∑
i=0

⌊n/2iB⌋ mod 2B

Darren Li
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Interactive proof

Consider the “product” of many different claims.
Let S(iB,B) = a⌊n/2iB⌋ mod 2B so uiB = u2B

iB+BS(iB,B), then:

P(i ,B) =
{

uiB
?
= u2B

(i+1)BS(iB,B)
}

Darren Li
An Efficient Modular Exponentiation Proof Scheme 19 / 37
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Interactive proof, part 2

The product P1 =
{

a ?
= b

}
and P2 =

{
c ?
= d

}
is P1P2 =

{
ac ?

= bd
}

P(i , 2B) ⇐⇒ P(2i ,B) ∧ P(2i + 1,B)
1−Negl⇐⇒ P(2i ,B)P(2i + 1,B)Q

This allows us to recursively decompose the original claim:

∏
i=0

P(i , 2B)wi

︸ ︷︷ ︸
A

→

(∏
i=0

P(2i ,B)wi

)
︸ ︷︷ ︸

B

(∏
i=0

P(2i + 1,B)wi

)
︸ ︷︷ ︸

C

Q

Darren Li
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Interactive proof, part 3

• Suppose A =
{

A1
?
= A2B

2 aAΣ

}
and likewise for B and C;

A/B/CΣ is easy to calculate, and A1 = B1, A2 = C2,
B2 = C1; so all the prover needs to send in one round is B2

• After enough rounds, the verifier can expand the claim and
compute whether or not A1 = A2B

2 aAΣ actually holds

Darren Li
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Prover Verifier

t = 0
Both parties agree on Ix = (λ,m,B, a, n, x)

t = 1

Prover sends µx

t = 2

Verifier sends Qx

Both parties agree on Ix−1

t = 3

Prover sends µx−1

t = 2

Verifier sends Qx−1

Both parties agree on Ix−2

t = 3

Prover sends µx−2

t = 4

Verifier sends Qx−2

Both parties agree on Ix−3

...
t = 2x− 2

t = 2x− 1

Prover sends µ1

t = 2x

Verifier sends Q1

Both parties agree on I0

Verifier checks I0 ∈? L and returns
accept or reject accordingly.

Interactive proof process

Darren Li
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Example for our proof scheme

• Consider the computation of 2137:

20︸︷︷︸
u8

→ 21︸︷︷︸
u7

→ 22︸︷︷︸
u6

→ 24︸︷︷︸
u5

→ 28︸︷︷︸
u4

→ 217︸︷︷︸
u3

→ 234︸︷︷︸
u2

→ 268︸︷︷︸
u1

→ 2137︸︷︷︸
u0

• Initial claim: u0
?
= u256

8 2137; prover sends u4, becomes
u4

?
= u16

8 28 and u0
?
= u16

4 2137−8×16, or together,
(u0uQ

4 )
?
= (u4uQ

8 )
1628Q+9

• Prover sends u2uQ
6 , claim becomes

(u0uQ2
2 uQ

4 uQ2Q
6 )

?
= (u2uQ2

4 uQ
6 uQ2Q

8 )422Q2Q+2Q2+1

Darren Li
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Proof of soundness

Generalized Forking Lemma (Bellare, Neven 2005)
For any randomized Turing machine A′ run on inputs
(I;Qx ,Qx−1, . . . ,Q1;R) for random tape R, randomly sampled I
and Q ← [1, g ], suppose it produces (J , σ), 0 ≤ J ≤ x , 1 ≤ σ ≤ h.
Let P = Pr[J ̸= 0]. Sample Q′ ← [1, g ] and run again
A′(I;Qx ,Qx−1, . . . ,QJ+1,Q′

J ,Q′
J−1, . . . ,Q′

1;R)→ (J ′, σ′). Then
J = J ′ but 0 < J and σ ̸= σ′ with probability at least P2/x − P/h.

Along with Bellare and Neven’s formal proof, intuitively, there are
only x possible values for J but many more for σ, so it averages
out - the number of pairs of different J is bounded
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Proof of soundness, part 2

• Suppose there is an adversary, that when given an initially
false claim can interact and fabricate sent values
µx , µx−1, . . . , µ1 to cause the verifier to finish with a true
claim with non-negligible probability; the adversary deceives
the verifier
• Consider a machine, that interacts with this adversary, giving

Qx ,Qx−1, . . . ,Q1, and returns (y ,Qy ) where y is the last
round such that the claim was false, as well as µy and the
false claim
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Proof of soundness, part 3

• Then by the Generalized Forking Lemma, we can find some
input such that the resulting y is the same and but different
Qy ,Q′

y with non-negligible probability, using the adversary
twice
• Both µy and the last false claim will be same for both the Qy

run and the Q′
y run
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Proof of soundness, part 4

• Suppose the last false claim has form R1
?
= B22s

1 aC : then the
value the prover, by sending the value µ, is claiming that both
R1

?
= µ2s ac1 , or µ ?

= B2s
1 ac2 - one of which must be false

• Then
(
B2s
1 ac2/µ

)|Q−Q′|
= 1 while 1 ≤ |Q − Q′| < 2λ and

B2s
1 ac2/µ ̸= 1; the low order assumption is broken
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1 Motivation

2 Previous work

3 Our Contribution

4 Methods

5 Our proof scheme

6 Proof of soundness

7 Outro
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Finale

We have proven that if the low order assumption cannot be quickly
broken, neither can our proof scheme, attaining the same safety as
the general Pietrzak VDF.
It remains an open problem to prove unconditional soundness
beyond the constraints presented by Pietrzak.
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Thanks!
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Pietrzak VDF construction

• We can apply the Pietrzak VDF construction to interactively
halve the claim that un = u2L

0 until we reach the limit of
stored checkpoints

One round of the Pietrzak VDF
Let Q be randomly sampled from [1, 2λ] by the verifier, for a security
parameter λ, then:

a2
2s
= r ⇐⇒ a2

s
= β and β2s

= r P=1−Negl(λ)⇐⇒ (aβQ)2
s
= βrQ

• Fiat-Shamir heuristic can turn the exchanged β values into a
proof
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Of claim multiplication

We have:

P(2i ,B) · P(2i + 1,B)Q

=

{
u2iBuQ

(2i+1)B
?
=
(

u(2i+1)BuQ
(2i+2)B

)2B

S(2iB,B)S(2iB + B,B)Q
}

Darren Li
An Efficient Modular Exponentiation Proof Scheme 33 / 37



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .. .. .. .Motivation
. .. .. .. .Previous work

. .. .Our Contribution
. .. .. .Methods

. .. .. .. .. .. .. .Our proof scheme
. .. .. .. .. .Proof of soundness

. .. .. .Outro
. .. .. .. .. .. .Extras

Why is there no such analogy for Pietrzak?

Define E1 = ⌊n/2i⌋ mod 22s , E2 = ⌊n/2i⌋ mod 2s ,
E3 = ⌊n/2i+s⌋ mod 2s , E4 = E2 + Q E3; if we mirror Pietrzak we
get

ui = u22s
i+2saE1

⇐⇒ ui = u2s
i+saE2 ∧ ui+s = u2s

i+2saE3

Negl⇐⇒ uiuQ
i+s =

(
ui+suQ

i+2s

)2s

aE4

This obtained form does not have the initial form; we cannot
divide it again.
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For interactive proof

The verifier can group together and verify the final claim as follows:

j∏
i=0

P(i ,B)wi =


j∏

i=0

uwi
iB

?
=

( j∏
i=0

uwi
(i+1)B

)2B

a
j∑

i=0
wi(⌊n/2iB⌋ mod 2B)


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Also for interactive proof

• Formally, a claim consists of the result r , the beginning b, the
size 2s, and the current weights wi , forming

r = b22s a
∑

wi(⌊n/22is⌋ mod 22s)

• When the prover sends µ and the verifier selects Q, the claim
becomes

µ
Q r =

(
bQ

µ
)2s

a
∑

Qi mod 2w⌊i/2⌋
(
⌊n/2is⌋ mod 2s

)
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Proof of soundness: why?

• After being reduced y both (µ,Q) and (µ,Q′) the resulting
claims are true, i.e.

µQR1 =
(
B1µ

Q)2s

ac1+Qc2 µQ′
R1 =

(
B1µ

Q′
)2s

ac1+Q′c2

• so...

R1/
(
µ2s

ac1
)
=
(

B2s

1 ac2/µ
)Q

=
(

B2s

1 ac2/µ
)Q′
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