ndness

An Efficient Modular Exponentiation Proof
Scheme

Darren Li
December 2, 2022

Darren Li

[} = = QA
An Efficient Modular Exponentiation Proof Scheme 1/37

r Contribution N

1 Motivation

2 Previous work

3 QOur Contribution

4 Methods

5 Our proof scheme

6 Proof of soundness
7 Outro

Darren Li

[} = = QA
An Efficient Modular Exponentiation Proof Scheme 2 /37

Contribution

soundness

Overview

® We present an efficient proof scheme for left-to-right modular
exponentiation

® When one calculates a” = r (mod m) using left-to-right
modular exponentiation, we can prove and verify the
correctness of this calculation much faster than the
calculation itself

® Among other uses, we have doubled the speed of the current

search for Generalized Fermat primes at PrimeGrid using our
work

[} = =

A
Darren Li

An Efficient Modular Exponentiation Proof Scheme 3/37

1 Motivation

Darren Li

An Efficient Modular Exponentiation Proof Sc

4 /37

Motivation
[e] lele}

PrimeGrid

Contribution

soundness

® |arge primes hold significant scientific value to number

theorists; PrimeGrid is the largest distributed systematic
search for primes, with 350K volunteers worldwide

® One of the types of primes PrimeGrid searches for are
Generalized Fermat primes, i.e. primes of the form (%) +1

where k < 22 for integer b; Generalized Fermat search may
produce a prime of record-breaking size

Darren Li

o = = A
An Efficient Modular Exponentiation Proof Scheme 5 /37

Motivation
[e]e] e}

r Contribution

Technology of PrimeGrid

oundness

® To search for Generalized Fermat primes, PrimeGrid uses

Genefer, developed by my advisor Yves Gallot, for primality
tests of Generalized Fermat prime candidates

Darren Li

[} = = QA
An Efficient Modular Exponentiation Proof Scheme 6 /37

Motivation A Contribution s f f of soundness

[eJe]e]]

Fast verification - why?

® In distributed computing, all results must be verified

® Slow verification does the same work twice, and this is what
PrimeGrid previously did

® Fast verification involves creating a proof that the calculation
is right, and requires that both making the proof and verifying
the proof is efficient

® We show that this is possible for all modular exponentiation
calculations, which is the bulk of primality tests

® This reduces the work necessary for a primality test on
PrimeGrid from 2 times to ~1.01 times

[} = = =

D¢

Darren Li

An Efficient Modular Exponentiation Proof Scheme 7/37

Previous work
[eJe]e]

2 Previous work

Darren Li

An Efficient Modular Exponentiation Proof Sc

tion Previous work Contribution

0@00

Gerbicz-Pietrzak proof scheme

® The most general proof scheme preceding ours is the
Gerbicz-Pietrzak proof scheme, using a combination of the
ideas presented by Robert Gerbicz, and the Pietrzak VDF
construction by Krzysztof Pietrzak

® The Gerbicz-Pietrzak proof scheme only applies to

. L .
calculations of the form a(2") mod m, i.e. a process of
squaring a value L times

[} = =

A
Darren Li

An Efficient Modular Exponentiation Proof Scheme 9 /37

tion Previous work
[e]e] o]

Contribution

Gerbicz double check

soundness

® Gerbicz presented a double check scheme

Gerbicz double check scheme
Let x; = a2

represent the steps of the squaring process. To verify that
B .
XB, X2B, X38, satisfies x; = X,~2 5 We may instead check

[T =TT

25

v = HX:B

® Can catch computation errors on friendly hosts, but is too
large to use and too easy to fake to use as proof

Darren Li

1
o = = A
An Efficient Modular Exponentiation Proof Scheme 10 / 37

tion Previous work Contribution s f scheme f of soundness

[e]e]e])

Gerbicz-Pietrzak Example

® As an example, consider the computation of 225:

ol 5 92 s 9% 4 98 _y 9l6 _, 932 _ 904 _, 9128 _, 9256
~—~ ~—~ ~—~ ~—~ ~—~ ~—~ ~—~ ~—~ ~—~

X0 X1 X2 X3 X4 X5 X6 X7 X8

® Gerbicz double check: (xexsxgxg) = ! (XOX2X4X6)

® Gerbicz-Pietrzak proof: initially, xg = xg%, prover sends x4,

verifier selects Q = 3, becomes X4x§’ = (xox3)1¢

® Prover sends (x0x3)* = xox3, verifier selects Q = 2, becomes

xoxxdx8 = (xox2x3xS)* which the verifier can compute

® Gerbicz-Pietrzak proof is then [xg, x4, xox¢ |

[} = =

A
Darren Li

An Efficient Modular Exponentiation Proof Scheme 11 /37

Our Contribution
[le]

3 QOur Contribution

Darren Li

An Efficient Modular Exponentiation Proof Si

soundness

Our contribution

® \We generalize the Gerbicz-Pietrzak construction to a sound
proof scheme for all instances of left-to-right modular
exponentiation

® Our methods have been implemented in Genefer22 (the
successor to Genefer) and have already been deployed on
PrimeGrid, doubling PrimeGrid’s search efficiency and creating
a fair opportunity for everyone

[} = =

A
Darren Li

An Efficient Modular Exponentiation Proof Scheme 13 /37

Methods
[le]e}

4 Methods

Darren Li

An Efficient Modular Exponentiation Proof Sc

14 / 37

Contribution
Proof scheme

Methods
(o] le}

soundness

directly accomplish

® We begin by describing a simple extension of the Gerbicz
double check to general exponents
® An analog of the Pietrzak proof scheme is impossible to

® We begin by approaching the problem informally, introducing
claims that can be easily split

a formal language

® We then formalize this interaction as a succinct argument for

Darren Li

o = = A
An Efficient Modular Exponentiation Proof Scheme 15 / 37

Contribution

Soundness of proof scheme

Methods
ooe

soundness

® To prove soundness even in adversarial conditions, we use the
generalized forking lemma to show soundness assuming the
low order assumption

¢ In other words, if the low order assumption cannot be
a false result

efficiently broken, one cannot efficiently forge a proof of

Darren Li

o = = A
An Efficient Modular Exponentiation Proof Scheme 16 / 37

Our proof scheme
9000000

5 Our proof scheme

Darren Li

An Efficient Modular Exponentiation Proof Si

Contribution \ ods Our proof scheme

0@00000

Double check scheme

® For left-to-right modular exponentiation of a", the sequence
of calculations is instead u; = al"/?']

® The relation between u; and u;; is u; = u,+ gln/2'] mod 2/

® Taking products across i =0, B,2B, ... and j = B provides
an analogy for the Gerbicz double check:

B

2 .
> |n/28 | mod 28
H uip = H Uip+B ar=o

[} = =

A
Darren Li

An Efficient Modular Exponentiation Proof Scheme 18 / 37

A

Contribution
Interactive proof

Our proof scheme
[e]e] lelele]e]

Consider the “product” of many different claims.

Let S(iB, B) = aln/2°)mod 2% g6y — 127 _S(iB, B), then

? B .
P(i,B) = {u,-B = u(2i+1)BS(IB, B)}

Darren Li

[} = = QA
An Efficient Modular Exponentiation Proof Scheme 19 / 37

us work

Our Contribution

Interactive proof, part 2

Our proof scheme
[e]e]e] Jelele]

soundness

The product P; = {a = b} and P, = {c L d} is Py Py { c= bd}

P(i,2B) < P(2i,B) AP(2i +1,B) —=

1— Negl

P(2i,B)P(2i +1,B)
This allows us to recursively decompose the original claim
H P(i,2B)"

HP2/ B | [[[P@i+1,B)")9
i=0
A B

Darren Li

—
C

o = = = A
An Efficient Modular Exponentiation Proof Scheme 20 / 37

Contribution \ ods Our proof scheme

[e]e]e]e] lele)

Interactive proof, part 3

® Suppose A = {Al L A%BaAE} and likewise for B and C;
A/B/Cy; is easy to calculate, and A} = By, Ay = Cy,
B, = Cq; so all the prover needs to send in one round is Bo

® After enough rounds, the verifier can expand the claim and
B
compute whether or not A1 = A% ahs actually holds

[} = =

A
Darren Li

An Efficient Modular Exponentiation Proof Scheme 21 /37

Our proof scheme
[e]e]e]e]

Both paties agree on £, = (A, Boa,n.z)

Verifier

e

e
Nerificr sends Quz
Both parties agrec on ;s

t=20-1—]

e

Verifier checks Iy €' £ and returns

accept or reject accardingly.

Interactive proof process

Darren Li

Our Contribution

Example for our proof scheme

ethods

Our proof scheme
000000

Proo oundness

Outro

~—

e Consider the computation of 2137

20 5 ol 5 92 4 ot _, 98
—~—
ug

Ly 9T _y 934 _, 968 _, 9137
~— ~— ~— —— <~
uz us us ug us Uz u Yo
° In|t|aI claim: uy = u2562137 prover sends w4, becomes
Uy = u8628 and uy = u162137 8x16 or together
Q 1698Q+9
(uouy’) = (U4”8)1628Q+
® Prover sends u2u§, claim becomes
Q2,,Q, QQy 7~
(uouy™ugfug?™) = (

Q2
ug Uy

Darren Li

Q Qz 0)422622 QRQ+2Q2+1
ug
[} = = QA

Proof of soundness
[leJele]e]

6 Proof of soundness

Darren Li

An Efficient Modular Exponentiation Proof Si

24 / 37

Our Contribution s f eme Proof of soundness

0O@000

Proof of soundness

Generalized Forking Lemma (Bellare, Neven 2005)

For any randomized Turing machine A’ run on inputs

(I; Qx, Qx—1, ..., Q1; R) for random tape R, randomly sampled /
and Q < [1, g], suppose it produces (J,0), 0 < J<x,1<o <h.
Let P = Pr[J # 0]. Sample Q' «+ [1,g] and run again

Al Qe Qu—ts -+, Qu1, @), Qs .., Qs R) = (U, 0”). Then
J=J"but 0 < J and o # o’ with probability at least P?/x — P/h.}

Along with Bellare and Neven's formal proof, intuitively, there are
only x possible values for J but many more for o, so it averages
out - the number of pairs of different J is bounded

[} = = =

QR

Darren Li

An Efficient Modular Exponentiation Proof Scheme 25 /37

Contribution

Proof of soundness, part 2

scheme

Proof of soundness
00e00

® Suppose there is an adversary, that when given an initially
false claim can interact and fabricate sent values
Hoxs Px—15 - -+

, 41 to cause the verifier to finish with a true
claim with non-negligible probability; the adversary deceives
the verifier

Consider a machine, that interacts with this adversary, giving
Qx; Qx—1,

., Q1, and returns (y, Q,) where y is the last
round such that the claim was false, as well as 1, and the
false claim

Darren Li

o = = A
An Efficient Modular Exponentiation Proof Scheme 26 / 37

Contribution

\
Proof of soundness, part 3

heme

Proof of soundness
00080

® Then by the Generalized Forking Lemma, we can find some
twice

input such that the resulting y is the same and but different

run and the Q)’, run

Qy, Q;, with non-negligible probability, using the adversary
® Both p, and the last false claim will be same for both the Q,

Darren Li

[} = = QA
An Efficient Modular Exponentiation Proof Scheme 27 / 37

Contribution \

heme Proof of soundness
0000e

Proof of soundness, part 4

® Suppose the last false claim has form R; L szsac: then the
value the prover, by sending the value p, is claiming that both

? s ? s .
Ry = p? a%t, or u = B¥ a% - one of which must be false

® Then (B%Sacz/,u)lQ—Ql‘ =1 while 1 < |Q — Q| < 2" and
B¥ a% /11 # 1; the low order assumption is broken

[} = =

A
Darren Li

An Efficient Modular Exponentiation Proof Scheme 28 / 37

7 OQOutro
Darren Li

An Efficient Modular Exponentiation Proof Sc

Finale

Contribution

undness

Outro
oeo

We have proven that if the low order assumption cannot be quickly
broken, neither can our proof scheme, attaining the same safety as
the general Pietrzak VDF.

It remains an open problem to prove unconditional soundness
beyond the constraints presented by Pietrzak.

Darren Li

[} = = QA
An Efficient Modular Exponentiation Proof Scheme 30 /37

Darren Li

An Efficient Modular Exponentiation Proof Si

Thanks!

Previous work

Our Contribution

Pietrzak VDF construction

ethods Our ¢

scheme

Proof of soundness

Extras
@00000

® We can apply the Pietrzak VDF construction to interactively
halve the claim that u, = ugL until we reach the limit of
stored checkpoints

One round of the Pietrzak VDF

parameter A, then

Let @ be randomly sampled from [1,2%] by the verifier, for a security
a225

s s P 1—Negl(X)
=r < a> =fand B = eg(
proof

(a89)”

= Br Q
® Fiat-Shamir heuristic can turn the exchanged (8 values into a

Darren Li

o = = A
An Efficient Modular Exponentiation Proof Scheme 32 /37

jork

Our Contribution

Of claim multiplication

oundness

Outro

Extras
[o] lelele]e]

We have:

B2iBY ;11 =

P(2i,B) - P(2i +1,B)%
_ { Q 7

(”(2i+1)5”(%i+2)3) g

S(2iB, B)S(2iB + B, B)Q}

Darren Li

[} = = QA
An Efficient Modular Exponentiation Proof Scheme 33 /37

Our Contribution

o} Our proof
Why is there no such analogy for Pietrzak?

oundness Outrc

Extras
[e]e] lele]e]

Define £y = [n/27| mod 225, Ey = |n/2| mod 2°,
get

225 E
Uj = Uipgsa
25

ui+s

Ez = |n/27"%| mod 25, Ey = E; + Q Es; if we mirror Pietrzak we

<~ Uuj

E. 25 _E

a 2 /\ Ui+5 — u,—+253 3

Negl Q Q 2

E

= vl = (”i+sui+2s) a™
divide it again.

This obtained form does not have the initial form; we cannot

Darren Li

[} = = QA
An Efficient Modular Exponentiation Proof Scheme 34 /37

For interactive proof

undness

Extras
[e]e]e] le]e]

The verifier can group together and verify the final claim as follows
J

2B
Wl — wi ;
H uj H ”(:+1

az: (Ln/Z’BJ mod 23)

Darren Li

[} = = QA
An Efficient Modular Exponentiation Proof Scheme 35 /37

1s work

Our Contribution

Also for interactive proof

undness

Extras
0O000e0

® Formally, a claim consists of the result r, the beginning b, the
size 2s, and the current weights w;, forming

2) 2i 2
F_b2 sag W,(Ln/2 ®] m0d25)
becomes

pir =

® When the prover sends p and the verifier selects @, the claim
Q

(8907 a= @ " Putiza) (L3270 mod 2)

Darren Li

[} = = QA
An Efficient Modular Exponentiation Proof Scheme 36 / 37

Proof of soundness: why?

undness

Extras
O0000e

claims are true, i.e.

uCR, = (BluQ)QS Se1+Qe

e After being reduced y both (i, Q) and (i, Q") the resulting
so...

uQ Ry = (Blu"')z a1 tQe

R/ (,ugs acl)

/

(sta”/u)o = (B¥ /)

Darren Li

[} = = QA
An Efficient Modular Exponentiation Proof Scheme 37 /37

	Motivation
	Previous work
	Our Contribution
	Methods
	Our proof scheme
	Proof of soundness
	Outro
	Extras

